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Entropic sampling via Wang-Landau random walks in dominant energy subspaces
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Dominant energy subspaces of statistical systems are defined with the help of restrictive conditions on
various characteristics of the energy distribution, such as the probability density and the fourth order Binder’s
cumulant. Our analysis generalizes the ideas of the critical minimum energy subspace (CRMES) technique,
applied previously to study the specific heat’s finite-size scaling. Here, we illustrate alternatives that are useful
for the analysis of further finite-size anomalies and the behavior of the corresponding dominant subspaces is
presented for the two-dimensional (2D) Baxter-Wu and the 2D and 3D Ising models. In order to show that a
CRMES technique is adequate for the study of magnetic anomalies, we study and test simple methods which
provide the means for an accurate determination of the energy—order-parameter (E, M) histograms via Wang-
Landau random walks. The 2D Ising model is used as a test case and it is shown that high-level Wang-Landau
sampling schemes yield excellent estimates for all magnetic properties. Our estimates compare very well with
those of the traditional Metropolis method. The relevant dominant energy subspaces and dominant magneti-
zation subspaces scale as expected with exponents /v and /v, respectively. Using the Metropolis method we
examine the time evolution of the corresponding dominant magnetization subspaces and we uncover the
reasons behind the inadequacy of the Metropolis method to produce a reliable estimation scheme for the tail

regime of the order-parameter distribution.
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I. INTRODUCTION

Computer simulations based on Monte Carlo sampling
methods have increased dramatically our understanding of
the behavior of the standard classical statistical mechanics
systems (for instance Ising-like models), but also of more
complex systems, such as disordered media and polymeric
and glassy materials. Our main approach, in the past half
century, was based on importance sampling in the canonical
ensemble. The Metropolis method and its variants were, for
many years, the main tools in condensed matter physics, par-
ticularly for the study of critical phenomena [1-5]. However,
for complex systems effective potentials have a complicated
rugged landscape with many minima and maxima which be-
come more pronounced with increasing system size. In many
such cases the Metropolis method and its variants are very
inefficient methods. Entropic sampling methods (ESMs) are
alternatives to the importance sampling methods, which at
least in principle do not suffer from such problems. Of
course, for second order phase transitions in unfrustrated sys-
tems cluster algorithms are quite efficient and have essen-
tially solved the “critical slowing down” problem. The per-
formance limitations of flat-histogram or entropic methods
have recently attracted considerable interest. Even for simple
systems, such as the Ising model, such methods have tunnel-
ing times in energy space that are not proportional to N? as
should be expected for a pure random walk, but they are
proportional to a higher power. Moreover, it has been shown
that tunneling times may be strongly dependent on the model
under consideration [6]. Furthermore, in order to apply an
ESM the density of states (DOS) of the system should be
known.
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Over the last decade, several efficient methods that di-
rectly calculate the DOS of classical statistical models have
been developed. A few remarkable examples are the entropic
[5,7], multicanonical [8], broad histogram [9,10], transition
matrix [11], and Wang-Landau [12] methods. Using these
methods, it is now possible to accurately estimate the DOS
of quite large classical statistical models [13]. Since for com-
plex systems the Metropolis method may be trapped for very
long times in nonrepresentative energy subspaces it is rea-
sonable to consider an ESM program using an approximate
DOS as an alternative to the traditional importance sampling
methods. Although this idea exists in the literature [4], the
effectiveness of the various possible implementations has not
been exploited by systematic comparative studies. For in-
stance, the following two-run strategy may be used in an
ESM program. In the first stage an accurate estimation of the
DOS of the system under consideration is achieved with the
help of, say, the Wang-Landau (WL) method, and in the sec-
ond stage the derived DOS is used in an ESM to estimate
further properties of the system, such as the order-parameter
distribution. In such a two-stage program, the critical mini-
mum energy subspace (CRMES) method recently developed
by Malakis er al. [14,15] may be used to restrict the energy
space and make such a program more efficient for the esti-
mation of the critical behavior of any statistical system. Our
first objective in this paper is to extend the CRMES condi-
tion and to observe to what degree appropriately defined en-
ergy subspaces are sufficiently large for the estimation of all
finite-size anomalies. Our second objective focuses on the
possibility to obtain all critical properties of the system by
using a one-run strategy of an ESM, based on a WL random
walk in a restricted energy subspace.

The rest of the paper is organized as follows. In Sec. II we
provide a brief outline of the CRMES restriction and give
alternative definitions of the dominant energy subspaces. The
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scaling of the extensions of these subspaces is illustrated for
the Baxter-Wu and Ising models. In Sec. III A we discuss
how, by employing the WL and the N-fold implementation of
the WL scheme in a restricted energy subspace, we may
generate approximations of the DOS of the system and at the
same time obtain energy—order-parameter (E, M) histograms.
It is suggested that this one-run WL strategy yields good
estimates of all magnetic properties. In Sec. III B we con-
sider the two-dimensional (2D) Ising model as a test case.
Our estimates are compared with those of the traditional Me-
tropolis method and the expected magnetic scaling behavior
is recovered. Finally, in Sec. IIl C we study our dominant
subspace method in the energy and the order-parameter
space. The subspaces sufficient for an accurate estimation of
magnetic finite-size anomalies are determined and their scal-
ing is analyzed. The tail regime of the order-parameter criti-
cal distribution is briefly discussed and the shortcomings of
the Metropolis method are clarified. Our conclusions are
summarized in Sec. IV.

II. ALTERNATIVES FOR RESTRICTING THE ENERGY
SPACE

Let us start by recalling the original CRMES restriction of
Malakis et al. [14]. Assume that E denotes the value of en-
ergy producing the maximum term in the partition function
of the statistical model, for instance the Ising model, at some
temperature of interest. Since we deal with a finite system of
linear size L, we are interested in the properties (finite-size
anomalies) near some pseudocritical temperature Tz, which
in general depends on L but also on the property studied.
Thus, for the specific heat peaks let us use the notation
T,[C]=T, ¢ for the pseudocritical temperature and define a
set of approximations by restricting the statistical sums to
energy subranges around the value E:E(Tz[C]):E(TL,C).
Let these subranges of the total energy range (E,;,, Enq) b€
denoted as follows:

(E_E,), E.,=ExA* A*=0. (1a)

Accordingly, the peaks are approximated by

CL(E_E,) = C, (A%

E+
=N"'T2| Z'> E? exp[D(E)]
E

£, 2
| Z'Z Eexpld®)] | |. (1b)

E

E+
b(E) =[S(E) - BE] - [S(E) - BE).  Z=2 exp[P(E)].
E

(Ic)

Since by definition P(E) is negative we can easily see that
for large lattices extreme values of energy (far from E) will
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have an extremely small contribution to the statistical sums,
since these terms decrease exponentially fast with the dis-
tance from E. It follows that, if we request a specified accu-
racy, then we may restrict the necessary energy range in
which DOS should be sampled. To introduce the minimum
energy subspace (MES), we impose the condition

C (A,
1 _)_l

m =r, 2
c ()

where r measures the relative error and it will be set equal to
a small number (r=107°), and Cz is the value of the maxi-
mum of the specific heat obtained by using the total energy
range. With the help of a convenient definition, we can
specify the minimum energy subspaces satisfying the above
condition. Their finite-size extensions will be denoted by:

(AE)C = (AE)Cz,r = min(E+ - E—)~ (3)

Demanding the same level of accuracy (r) for all lattice
sizes, we produce a size dependence on all parameters of the
above energy ranges and in particular the extensions of the
critical MES should obey the scaling law [14]

_ (A

T L, (4)

C

In order to determine the location of the MES we may follow
successive minimal approximations to the specific heat peak
[14]:

CL() = CLALAD), A% =A%s 6%,

T, A7=0, (52)
j=1.2, ...,

where one of the above @ increments is chosen to be 1 and

the other 0 according to which side of E is producing at the
current stage the best approximation:

(01 =16, =0) & |Cp - CL(A7. A7 + 1)
=<[C.- CL(A] +1,4))

i

(0,,=0.6,,=1) & |C,~ C,(A7. A + 1)
> 1€~ Culj + 1LAD) (5b)
The above defines a sequence of relative errors for the spe-
cific heat peaks (r)):
)
C,

1, (5¢)

T

and the MES is the subspace centered at E corresponding to
the first member of the above sequence (5) satisfying r;<r.
The location of these subspaces can be predicted either by
extrapolation, from smaller lattices, or by using the early-
stage DOS approximation of the WL method [15]. Using a
sufficiently wider subspace we can also accurately estimate
their extensions and verify the scaling law (4) as shown in
Ref. [14].

The above scheme has been tested for the Ising and
Baxter-Wu models [14,15] and it has been shown that this
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particular rule provides very accurate extensions satisfying
quite well the expected scaling law (4). However, one may
conceive other ways for specifying the locations of the en-
ergy subspaces that will essentially produce comparable ap-
proximations. A simple idea is to use a condition based on

the energy probability density UTLC(E) o ®(E)] meaning the
application of Eq. (6) at a particular pseudocritical tempera-

ture 77 . That is, we may define the end points (E,) of the
subspaces by simply comparing the corresponding probabil-
ity densities with the maximum at the energy E:

E,: exp{®(E)}=<r. (6)

Applying this restriction at a particular (pseudocritical)
temperature (T*L) is much easier than applying the successive
minimal approximations described in Eq. (5) and it will pro-
duce comparable approximations for the specific heat
maxima. The corresponding scaling variable q,fr*,c(E) for the

resulting MES should also obey the law (4). Another inter-
esting pseudocritical temperature is the temperature corre-
sponding to the fourth order Binder’s cumulant for the en-
ergy distribution. This reduced cumulant is defined by

(EY)
- 3<E2>2

and it is well known [15-17] that this quantity has a mini-
mum V; at a pseudocritical temperature T;[V]=T} . In the
thermodynamic limit this temperature also approaches the
critical temperature but for finite lattices is different from the
pseudocritical temperature 7} ¢ of the specific heat. Thus, the
maximum term of the partition function, corresponding to
the temperature of the cumulant finite-size anomaly, will be
now located at a different value of the energy spectrum [say,

Vi(T) =1 (7)

at E(TL,V)]. Therefore, if we follow the probability density
criterion described above in Eq. (6) to define the CRMES at
these temperatures we will generally find subspaces that do
not coincide with the subspaces for the specific heat. How-
ever, for large lattices the nonoverlapping parts of these sub-
spaces are relatively very small and we may run the WL
algorithm in the union of these subspaces in order to study
both properties.

Let us now follow an analogous approach with the suc-
cessive minimal approximations of Eq. (5) for the cumulant
anomaly. It is of interest to note that if we define the CRMES
by a similar condition

V(A

- 1| =r 8
Vi ‘ ®

then, for sufficiently large lattices, the scaling law (4) for the
corresponding extensions [we may now use the W
=(A§)%,/Ld variable] will not be obeyed. This is due to the
fact that the cumulant goes asymptotically to a finite value
(Vi:Vw=2/ 3) and therefore the relative accuracy criterion
(8) is not appropriate for large lattices or, in other words,
becomes ineffective (see also the discussion bellow). We
may now introduce the finite-size distance from the
asymptotic value of the Binder parameter, (V:C—VZ), to our
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FIG. 1. 2D Ising model (L=10-100 [14], L=120,140,...,200
this work). Behavior of scaling variables corresponding to various
alternative definitions of dominant energy subspaces defined in the
text. \Pfr;.c(E) is the scaling variable defined with the help of the
restriction (6) at the pseudocritical temperature 7, .. Correspond-
ingly, W is the scaling variable defined from Eq. (5) at the pseud-
ocritical temperature 7y ¢ and Wy., is the scaling variable defined
from Eq. (9) at the pseudocritical temperature 7} y. Finally, ¥y is
the scaling variable defined from Eq. (8) at the pseudocritical tem-
perature T y. Note the strong decline of this last variable from the
expected asymptotic law, as explained in the text. The logarithmic
scale in the x axis is used in order to facilitate the observation of the
logarithmic behavior.

considerations and modify the criterion (8) as follows:

Vi(A, v,
# -1 L _1]<r 9)
v, V.

It appears (see below) that this option makes the exten-
sions of the resulting subspaces follow very well the scaling
law (4) and for the 2D Ising model we obtain an almost
perfect coincidence with the extensions of the corresponding
subspaces obtained for the specific heat. The corresponding
scaling variable will be denoted by WV;sz(AE)%/;Vw/ L¢. For
a second order transition the limiting value of the energy
cumulant is known (V.,.=2/3) and this makes the implemen-
tation of the scheme (9) possible.

The above alternative definitions for the CRMES were
applied to the 2D Ising model using the DOS data of Ref.
[14] (L=10-100) but also additional data up to L=200 (L
=120,140,160,180,200). Figure 1 illustrates the scaling be-
havior of the corresponding scaling variables for the CRMES
of the specific heat at its pseudocritical temperature 7}  us-
ing the minimum subspaces resulting from Eq. (5¢), and also
the minimum subspaces resulting, at this temperature, from
the probability density condition studied in Eq. (6). The same
figure displays the estimates for the two options (8) and (9)
for the CRMES corresponding to the minimum of the Binder
parameter at its pseudocritical temperature 77 y. The ex-
pected logarithmic scaling law [14,18] is obeyed well for all
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FIG. 2. 3D Ising model (L=4-32 [14]). Behavior of the scaling
variables W¢, Wy, , and Wy, as in Fig. 1. Note again the clear
decline of the variable Wy, defined by Eq. (8). The log-log scale is
used in order to observe the expected power law.

definitions with the clear exception of the cumulant condi-
tion (8) in which case the scaling variable shows a clear
decline from the logarithmic divergence for large lattices.
This is due to the fact that this parameter approaches the
finite value V,,=2/3, and the condition defined in Eq. (8)
becomes ineffective for large lattices. Note that with increas-
ing lattice size several significant figures of this finite num-
ber are determined from a small part of the dominant energy
subspace. The trick proposed in Eq. (9) not only keeps the
scheme in the proper scaling form but also is remarkable in
that the resulting extensions of the CRMES of the specific
heat and the Binder parameter completely coincide for the
2D Ising model. This coincidence occurs also for the
Baxter-Wu model, but not for the 3D Ising model (see be-
low). Note, however, that the corresponding pseudocritical
temperatures are different and their CRMESs do not coincide
(for L=100 their displacement is 20 energy levels), only their
extensions are equal. Figure 2 illustrates the behavior of the
same scaling variables for the 3D Ising model using the DOS
data of Ref. [14]. The situation is very similar and is de-
scribed by the power law (4) as discussed in Ref. [14]. Tt is
noteworthy that the cumulant condition (8) leads to a clear
decline from the appropriate power law for large lattices and
the trick proposed in Eq. (9) seems to yield the expected
critical behavior. Finally, Fig. 3 presents the analogous
graphs for the Baxter-Wu model using the DOS data of [15].
Again the scaling variables appear to follow the expected
scaling law (4) and a decline in the case of the condition (8)
is observed. However, this decline is weaker for the
Baxter-Wu model due to the fact that the cuamulant minimum
is quite deeper for this model, that is, the difference (V:o
—VZ) is relatively larger for the Baxter-Wu model. Fitting
these data to the expected power law (see the discussion in
the caption of Fig. 3) we find that the best estimate for the
exponent a/v is produced from the original [14,15] mini-
mum subspaces of the specific heat. As mentioned above the
extensions of the CRMES determined for the cumulant by
the condition (9) for the 2D Baxter-Wu model coincide with
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FIG. 3. 2D Baxter-Wu model (L=42, 51, 60, 69, 75, 78, 84, 87,
and 96 [15]). Behavior of the scaling variables W¢ . (g), Ve, Wy,
and Wy, again as in Fig. 1. The modest decline of the variable vy,
defined in Eq. (8) is due to the fact that the cumulant minimum is
much deeper for this model. The fitted lines correspond to power
laws of the form W=a+bL" with exponents w=0.97(3), 0.99(3),
0.99(3), and 0.92(3), respectively. The finest estimate for the ex-
pected critical exponent w=a/v=1 is the one corresponding to the
original definition [Egs. (2)—(5)] of the minimum subspaces.

the extensions of the CRMES of the specific heat [Eq. (2)] of
the model.

III. ENTROPIC SAMPLING VIA WL RANDOM WALKS
A. Microcanonical estimators via the WL scheme

As mentioned in the Introduction, the ESM using an exact
(if available) or an accurate approximation of the DOS may
be considered as an alternative to the various importance
sampling methods used in the literature to estimate canonical
averages and probability distributions of macroscopic ther-
modynamic variables. Here we shall examine the idea of
producing accurate estimates for finite-size magnetic anoma-
lies by using a simple ESM based on the WL random walk in
an appropriately restricted energy subspace (E,,E,). We
shall also test our results by comparing to the Metropolis
method [1].

We implement a WL random walk in a restricted energy
subspace (E|,E,) and at the same time we accumulate data
for the two-parameter (E,M) histogram. For a large system
we employ a multirange algorithm [12] in which indepen-
dent random walks are used for different energy subintervals
and the resultant pieces are then combined to obtain the DOS
in (E,E,). The WL modification factor (f;) is reduced at the
Jjth iteration according to f=e, fjﬂf]lﬁ J=2,....J4, and
for the histogram flatness we use a 5% criterion as in our
previous studies [14,15,19]. Note that the detailed balance
condition is satisfied in the limit f— 1. Let the exact density
of states be denoted by G(E) and the DOS of the above WL
process be denoted by Gy, (E). Similarly, let Hy, (E,M) be
the histogram produced during the WL process by a specific
recipe which will be described below.
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The resulting approximation of the DOS and the corre-
sponding E,M histograms may be used to estimate the mag-
netic properties of the system in a temperature range that is
covered by the restricted energy subspace (E|,E,). Canoni-
cal averages will be then approximated as follows:

> (M")pG(E)e™PE >
E - Ee(El,Ez)

> G(E)ePE Y GuyE)e”
E

Ee(E|.Ey)

(M") g wiG WL(E)e_'B

(M") =

(10a)

where the microcanonical averages (M")y are obtained from
the Hy,;(E,M) histograms as

Hy, (E,M)
Hy, (E) ~

(M") g = (M") gy = E M'—"=—"—=_ (10b)

Hy, (E) = X, Hy, (E.M),
M

and the summation in M runs over all values generated dur-
ing the process in the restricted energy subspace (E,,E,).

The accuracy of the magnetic properties obtained from
the above averaging process will depend on many factors.
First, the energy subspace used restricts the temperature
range for which such approximations may be accurate. This
restriction has as a result that the process will not visit all
possible values of M, but this fact is of no consequence for
the accuracy of the magnetic properties at the temperature
range of interest, as long as the estimated DOS is accurate.
Second, the accuracy of the above microcanonical estimators
will, as usual, depend on the total number of visits to a given
energy level [Hy,;(E)], and also on the number of different
spin states visited within this energy level. However, these
are statistical fluctuations inherent in any Monte Carlo
method and we should expect improvement by increasing the
number of repetitions of the process. At this point let us note
that statistical fluctuations may be reduced, as usually, by
multiple measurements but also by using some refinements
of the original WL algorithm [20,21]. An illustrative figure
including such a refinement will be presented in the next
subsection. Finally, the construction of reliable (uniform) ap-
proximations for microcanonical averages is an important
open problem, discussed recently in some detail by Oliveira
[22]. The microcanonical approximations ((M")y y;) appear-
ing in Eq. (10) and used in this paper are obtained from the
WL multirange process, and the corresponding N-fold ver-
sion of Shulz et al. [23]. The recipes employed are outlined
and tested in the following.

There are mainly three categories of microcanonical
simulation approaches. In the first, one tries to satisfy com-
pletely the fixed-energy constraint, a typical example is the
Q2R cellular automaton [24,25]. In the second, one tries to
mildly relax the energy constraint by using relatively small
energy windows in order to avoid ergodic problems, as done
by Creutz [26] in his “demon” method. Finally, the fixed-
energy constraint is completely relaxed [27] and various
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ideas have been tried, ranging from the tuned temperature
canonical approach of Oliveira [22] to the flat histogram
recipe of Wang [28].

In order to present some justification for the scheme of
Egs. (10a) and (10b) let us suppose that we know the exact
DOS and we are about to perform an infinitely long entropic
sampling in the restricted energy subspace (E|,E,). In this
case we can write for the Monte Carlo process with sampling
probability P;«1/G(E) [4]:

> (M"G(E)e Pt

(M) =
> GE)erE
(E.E)
N
> MiP;'ePE > M) psuG(E)e PE
i=1 (ELEy)
= =
2 -1 —BE 2 G(E)e_ﬁE
<~ pie (EyEy)
-

(11a)

The last approximation in Eq. (11a) assumes that in the
limit of an infinite Markovian chain the Hpgg,(E) histogram
is perfectly flat. Accordingly, Hpq,(E) has been set equal to
a constant in the denominator (in replacing the sum over the
N sampled microstates by a sum over energies) and then
moved to the numerator in order to form the ESM microca-
nonical averages defined by

HESM(E’M)

<Mn>E,ESM = E M"
M

Hysy(E) = 2 Hggy(E,M).
M

The above observation shows that the ESM microcanonical
average should be an unbiased estimator for the fundamental
microcanonical average:

N
<M">E,ESM - <Mn>E’ (12)

Therefore, Eq. (12) provides the essential theoretical sup-
port for using a multirange WL process (at its late stages) to
obtain microcanonical simulators. It is reasonable to expect
that the high-level stages (j> 1) of the WL process will re-
semble the dynamics of the ESM and therefore will produce
good approximations for the microcanonical averages. This
approach is similar in many respects to the flat-histogram
method of Wang [28]. Since the resemblance of the WL pro-
cess with the ESM depends on the value of the control pa-
rameter (f;), we shall classify our recipes by using the j
range utilized for updating the (E,M) histogram during the
WL process. Thus, if all accepted microstates of the WL
process during the j range (j=Jj,. ....Js,) are used, for up-
dating the (E,M) histogram, the resulting recipes will be
denoted by WL(J,;,—Jj,,). When using the N-fold version of
the WL process we always start with several (Jy,;) WL j
iterations and then continue the process from the next level
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(IN-fora=Jwr+ 1) by carrying out further N-fold WL iterations
(7=JIN-fotd> -+ »Jsin)- In this recipe, we shall use only the
N-fold iterations for updating the (E, M) histogram and time-
weight the histogram by using the lifetime of microstates
calculated according to the N-fold method [2,19,23]. The re-
sulting recipes are denoted by WL(N-fold) (/y.soa— fin)-

The above described schemes were tested by using Eq.
(10) to obtain certain magnetic properties of the 2D Ising
model (for lattices with sizes L=20-100) and compare to the
estimates obtained by the Metropolis method. The finite-size
anomaly of the susceptibility and its value at the exact criti-
cal temperature, as well as the value of the order parameter
also at the exact critical temperature were used in these tests
and appear in the following subsection. For the magnetic
susceptibility we have used the definition

1 <M2>—<|M|>2)
N=—|—"—7"— 13
xi(T) N( T (13)
and for the order parameter
my = (|M|/N)r. (14)

B. Metropolis versus WL-CRMES schemes:
A comparative study

The estimates of the Metropolis method were obtained as
follows. First an initial equilibration period of 50 X L* usual
Monte Carlo steps (lattice sweeps) was applied without up-
dating the histograms. After thermalization, the updating of
the histograms was applied in every Monte Carlo step, while
the magnetic properties, the order-parameter distributions
and the time-evolving dominant M subspaces were deter-
mined and observed in time steps of 50X L?> Monte Carlo
sweeps. The time evolution lasted a total of 300 such time
steps for all lattice sizes (for L=70, 120 and 140; see also the
discussion below). Thus, for a lattice of linear size L=100,
the above time evolution accounts to a total of 1.5X 103
lattice sweeps.

The estimates of the WL multirange process were ob-
tained using, for each lattice size, 30 independent random
walks in the appropriate (E|,E,) energy subspace. These
subspaces were chosen carefully to cover a wide temperature
range close to the critical point, so that the DOS and the
H(E,M) histograms produced would yield accurate estimates
of all thermal and magnetic properties in the temperature
range. The energy subspaces were wide enough to produce
relative accuracies, within the scheme, far beyond the crite-
rion r=107%, which was finally applied to determine the
dominant subspaces. The time requirements of the described
Metropolis estimation were notably greater than the de-
scribed WL multirange process of 30 independent random
walks. For L=100 the WL scheme was about three times
faster than the Metropolis scheme. Note that the Metropolis
method produces estimates only for one particular tempera-
ture and not for a wide temperature range. For a lattice of
linear size L=140 the above described WL scheme is at least
ten times faster than the described Metropolis scheme.

The estimates derived from the WL recipes appear to have
relatively small deviations from the corresponding Metropo-
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FIG. 4. Relative deviations of WL ES schemes, with respect to
the Metropolis algorithm defined in Eq. (15), calculated from the
order parameter at the critical temperature 7. The error bars used
show the Metropolis relative uncertainties calculated as five stan-
dard deviations in the equilibrium regime.

lis estimates and, with a notable exception, they seem to be
within the given error bounds. The comparison with the Me-
tropolis method is presented in Figs. 4—6. The relative varia-
tions shown in these graphs are defined with respect to the
Metropolis estimates by assuming that these are more accu-
rate, i.e., we define

QMetr - QWL

15
QMetr ( )

e(Q) =

where Q=my and/or Q= ;. The error bounds used in these
graphs refer to the Metropolis estimates in the observed equi-
librium regime which is roughly defined as the last almost
flat part (r= 150-300) in the above described 300 time steps.
To define the error bounds we have used a confidence level

0.08 —— . | | |
—=— Metropolis
o~ WL(1-24) . - .
- WL(12-24)
0.04 | - WL(Nfold:12-24) |
—+— WL(Nfold:14-26)
/T~U 83 *|' $ 8.“}_
X 000 5 )
@ L ‘(L//i |
-0.04 - . |
O
20 40 60 20 &

L

FIG. 5. The same deviations as in Fig. 4, again at T, calculated
now from the susceptibility. The error bars as in Fig. 4 show again
the Metropolis relative uncertainties calculated as five standard de-
viations in the equilibrium regime.
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FIG. 6. Susceptibility deviations at the corresponding pseud-
ocritical temperatures. The error bars as in Figs. 4 and 5.

of five standard deviations obtained in this wide time win-
dow.

Figure 4 shows the relative deviations from the Metropo-
lis mean values of the order parameter at the exact critical
temperature for four recipes of the WL scheme, as indicated
in this figure. The Metropolis estimates have very small error
bounds of the order of 0.5% or less, besides the fact that we
have applied the above mentioned demanding confidence
limit. The deviations of the WL schemes are reasonable (of
the order of 1% or less) with the clear exception of the case
WL(1-24) in which the histogram’s [H(E,M)] updating
started from the very early stage of the WL process. For large
lattices, this recipe seems to produce a significant overesti-
mation of the order parameter, at the exact critical tempera-
ture, and this is enhanced with increasing lattice size. Since,
the detailed balance is strongly violated at the early stages of
the WL process, the observed failure of this recipe should be
attributed to the detailed balance violation. The related over-
estimation may be possibly a result of an oversampling dis-
tortion of large magnetization values at the low-energy part
of the energy range used. Distortions stemming from the
violation of the detailed balance condition are difficult to
explain and in general their origin is a subtle matter. How-
ever, such systematic distortions are not observed for the
other three recipes appearing in Fig. 4. We consider this as a
first strong indication that the weak violation of the detailed
balance condition for these high-level WL schemes is not
statistically significant. The behavior of the relative devia-
tions for the susceptibilities at the exact critical temperature
in Fig. 5, and at the pseudocritical temperatures in Fig. 6
appear in general, much better from those shown in Fig. 4.
Again the distortions of the WL(1-24) scheme become pro-
nounced as we increase the lattice size.

At this point let us try to observe in more detail the effect
of the WL iteration level on an estimated magnetic property
and also the effect of one of the simplest refinements of the
WL algorithm for the square Ising lattice of size L=30. Us-
ing an accurate DOS Gy, obtained from a previous WL run
(J4i»=24), we have calculated, with the help of Eq. (11), the
critical susceptibility Xr, as a function of the WL iteration
level in a new WL diffusion process. In this new multirange
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FIG. 7. Evolution of the estimates of the critical susceptibility
with the WL iteration on a lattice of linear size L=30. The filled
(open) squares present the case MR-WL1 (MR-WL2) which is the
multirange WL(1-24) [WL(12-24)] recipe, described in the text.
Upper open triangles (MR-WL2S) illustrate the evolution when a
separation (S) refinement of 16 spin flips is applied between suc-
cessive records in the (E,M) histograms. The last two cases
WL2S(t;) and WL2S(31;) (down filled triangles and open circles,
respectively) correspond to a simple one-range approach of differ-
ent simulation times. The duration of each WL iteration was care-
fully chosen, so that saturation of the histogram fluctuation was
well obeyed, as shown in the inset (j=12). The solid line represents
the estimates of y; obtained by the Metropolis run, as explained in
the text. ‘

(MR) process each WL iteration level is repeated 30 times
for each energy subinterval. Figure 7 shows the evolution of
the critical susceptibility to its equilibrium value for five
cases. In the first case (MR-WLI) the updating of (E,M)
histograms follows the recipe WL(1-24) and in the second
case (MR-WL2) the recipe WL(12-24). The third case
(MR-WL2S) follows a refinement of the WL algorithm pro-
posed by Zhou and Bhatt [20]. The additional element of the
algorithm is that now we allow for a number S (S=16) spin
flips between successive records in the histograms (and in
the DOS modification). Introduction of such a separation di-
minishes systematic errors due to the correlation between
adjacent records as shown in Ref. [20]. From the first case
we note that starting the (E,M) histogram updating process
at the early stage of the WL difusion is analogous to adding
a “nonequilibrium memory effect” in our cumulative histo-
grams. This early effect is stronger when the WL algorithm is
used in a simple one-range fashion, as our simulations have
shown. It is also apparent that the refinement introduced by
the separation S clearly improves, in the cost of the addi-
tional spin flips, the behavior of the evolution of the mag-
netic susceptibility Xr, toward its final equilibrium value,
which otherwise (S=1) is obtained in a longer run.

Zhou and Bhatt [20] have given a proof of the conver-
gence of the WL algorithm and found that the fluctuation of
the histogram is proportional to 1/ \s’m where f is the modi-
fication factor. This has been recently confirmed by numeri-
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cal tests [21], where it was shown that the criterion for re-
ducing f goes beyond the “flat-histogram” idea and that
“enough statistics” should be obtained in each WL iteration.
According to Lee, Okabe, and Landau [21] an optimal algo-
rithm will stop the simulation as soon as the histogram fluc-
tuation at the jth iteration, denoted as AH;=2H(E)
—-ming{H,(E)}], becomes saturated. In order to observe
whether we will have a noticeable improvement on the mag-
netic susceptibility estimates by applying the proposed en-
tropic sampling scheme [WL(12-24)] for longer simulation
times, at each j (=12—-24) iteration, we present also in Fig. 7
the cases WL2S(#;) and WL2S5(3t)). Both these runs were
performed via a simple one-range WL scheme, using at each
iteration more Monte Carlo steps per spin (MCSS) than re-
quired for the saturation of AH_ j» Moreover, the latter case
uses three times the number of MCSS of the former. The
inset of Fig. 7 illustrates the clear saturation of AH,_, for
these runs [the solid (dotted) line corresponds to duration £
(3tj)]. Comparing the estimates of the last three cases shown
in Fig. 7 (§=16) we may draw the following conclusions.
First, the multirange approach applied in the case MR-WL2S
gives comparable estimates to those obtained from the one-
range implementation of the WL scheme and second, a much
longer run, such as the WL28(3tj), does not yield a notice-
able improvement. It appears that an optimal and quite accu-
rate implementation of the proposed entropic scheme can be
constructed using a multirange H(E, M) histogram updating
process, during the high-level “well saturated” WL iterations.

The recent combination of Lee’s entropic sampling with
the WL algorithm presented in Ref. [21] may be also imple-
mented to test and possibly improve the CRMES entropic
scheme proposed here. Finally, the adaptive algorithm of
Trebst et al. [29] is of particular interest for a CRMES imple-
mentation and would also be stimulating to compare the
“bottleneck region,” or region of minimum diffusivity, of this
method with the dominant energy subspaces as defined in
this paper. Therefore, we conclude that the high-level WL-
(CRMES) schemes are reasonable alternatives to the Me-
tropolis method. The estimates for thermodynamic param-
eters involving higher moments of critical distributions
appear to be of the same as or even better accuracy than
those corresponding to the traditional method.

C. Energy and order-parameter dominant subspaces

The energy E producing the maximum term in the parti-
tion function at the pseudocritical temperature of the suscep-
tibility Tz[X]ETL,X may be easily located. Thus, we may
apply a minimal approximation scheme analogous to that of
Eq. (5) to observe the evolution of the susceptibility maxi-
mum as we expand the energy subspaces centered around E.
Now the value of the susceptibility is used in place of the
specific heat and the resulting CRMES is the subspace cen-
tered at E corresponding to the first member of the sequence
satisfying

XA
X

Provided that our initial guess for (E,,E,) is wide enough we
also obtain accurate estimates for the finite-size extension of

1| <r. (16)
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FIG. 8. 2D Ising model: Logarithmic scaling behavior of the
finite-size extensions of the CRMES defined with the help of spe-
cific heat maxima according to the successive minimal approxima-
tions [Eq. (5)] and the analogous extensions of the CRMES defined
with the help of the susceptibility maxima [Eq. (16)].

these subspaces and we would expect that the relevant scal-
ing variable \PX=(AE))2(/L" would obey the scaling law (4).
Therefore, we may restate the scaling law as

_ (AE)

T ~L" (17)

[¢)

where @ (=0;) denotes the finite-size value of some ther-

modynamic variable close to a critical point and (AE)@ is the
extension for appropriately defined minimum energy sub-
spaces. In analogy with our findings [14,15] for a diverging
specific heat behavior, we expect that a diverging suscepti-
bility and the criterion (16) will yield extensions scaling ac-
cording to the above law. The alternative method described
in Sec. IT which employs the energy density function [see Eq.
(6)] may also be used and is easier to implement.

Figure 8 illustrates the scaling behavior of the extension
of the CRMES defined with the help of the specific heat
maxima [Eq. (5)] and the corresponding CRMES defined
with the help of the magnetic susceptibility maxima, as dis-
cussed above [Eq. (16)]. The corresponding scaling variables
should be expected to obey the scaling law (17), and for the
2D Ising model the well known logarithmic law [14,18]. As
seen from this figure, this logarithmic law is well obeyed for
both restrictive schemes as expected.

Finally, we may describe a procedure for specifying the
dominant subspace in the order-parameter space. We assume
that the energy subspace (E|,E,) is sufficiently broad to ap-
proximate to the desired degree of accuracy the probability
density of the order parameter at some temperature of inter-
est by
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FIG. 9. 2D Ising model: Finite-size behavior of the extensions
of critical minimum magnetic subspaces (CRMMSs) obtained from
the WL schemes, at the susceptibility pseudocritical temperatures,
calculated with the help of the definition (19) and using r=107°.
The fitted line correspond to the power law 0.525L'7.

> [Hy(E.M)/Hy (E)]Gy,(E)ePE
Ee(E|,E,)

Py(M) =
Y GuE)eFt
Ec(E|.Ey)

(18)

Next, we find the value M that maximizes the above density,
at the pseudocritical temperature 7, (or some other tem-
perature, for instance the exact critical temperature), and we

locate the end points (M.,) of the magnetic critical subspaces
by

_ Pp (M)
7, (M
M, —X——<r. (19)

Py, (M)

The above condition is in full analogy with that of Eq. (6)
applied there in the energy space and since we will now
consider only dominant M subspaces, defined with the help
of the above probability density criterion, we shall avoid in
our notation the explicit reference to the probability density.
Accordingly, we denote the extension of the resulting mag-
netic subspaces by

(AM)TL,X = (AM)PTL, M) = min(}\h - M—)a (20)

and we should now look for a scaling law of the form

- AT
ETL,X = :PTL,X(M) = Ld = [, (21)

Figure 9 illustrates the scaling behavior of the critical
minimum magnetic subspaces (CRMMSs) obtained using
the magnetic space restriction (19), defined above, and the
accuracy level r=107% at the pseudocritical temperatures of
the susceptibilities. The behavior of the high-level WL reci-
pes is very good and provides quite accurate estimates for the
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FIG. 10. The same as in Fig. 8 at the exact critical temperature
T., including now for comparison the CRMMS corresponding to
the order-parameter probability distributions obtained by the Me-
tropolis algorithm. The fitted line, used as a guide to the eye, is the
power law 0.55L'73, obtained by fixing the exponent to 1.75 and
fitting the data L=20-140 of the WL(N-fold:12-24) scheme. Note
the decline of the Metropolis CRMMS.

critical exponent y/v. The line shown is the power law
0.525L'7> which is obtained by fixing the exponent to 1.75
and fitting the WL(N-fold:12-24) data. This is almost iden-
tical with the power law obtained by using the exponent as a
free parameter, which yields 0.535L' 74, Note that the devia-
tions of the WL(1-24) scheme are not observable for small
lattices. However, with increasing lattice size (L>60) they
become quite apparent. Figure 10 presents a similar illustra-
tion at the exact critical temperature comparing now not only
the WL recipes but also the Metropolis method. The devia-
tions from the expected scaling law are now quite apparent
not only for the “bad” WL(1-24) recipe but also for the
Metropolis method. Table I gives estimates of the critical
exponent obtained from the schemes shown in Fig. 10 using
only the intermediate data L=50-100 in which these devia-
tions are still moderate. From this table the overestimation of
the WL(1-24) scheme but also the tendency of underestima-
tion of the Metropolis scheme is quite obvious. The Me-
tropolis data used for L=20-100 were obtained from the
CRMMS developed at the end of the 300 time steps de-
scribed in Sec. III B. It is of some interest to list here some
details of the end points of the dominant magnetization sub-
spaces. Let us consider the case L=100 as an example. The
broad energy range used in our runs for the WL process was
(ie=850, ie=2150), where the counting of energy states is
given by ie=(E+2N)/4+1. The dominant energy ranges are

TABLE 1. E=(AM)?*/L*>=alL"; exact w=y/v=1.75. Data fit-
ted: L=50-100, T=T..

Metropolis  WL(1-24)  WL(12-24) WL(N-fold:14-26)
a 0.59(6) 0.31(9) 0.54(1) 0.54(1)
w 1.73(2) 1.89(6) 1.76(1) 1.76(1)
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FIG. 11. Illustration of the very slow equilibration of the Me-
tropolis algorithm in the tail regime. Time development of the ex-
tensions of CRMMS (corresponding to »=10"* and 107°) of the
Metropolis algorithm. To observe the distance from the true or tail
equilibrium we have divided the time-developing Metropolis exten-
sions by the corresponding extensions of the WL(N-fold:12-24)
scheme so that true equilibrium occurs at the value 1. It is obvious
that for small r and large L true equilibrium of the Metropolis
method is not attained, even for very long runs.

(a) at the pseudocritical temperature of the specific heat [ie
=1061(3), ie=1947(3)] and (b) at the pseudocritical tem-
perature of the susceptibility [ie=1142(3), ie=1959(3)]. The
maximum value of the magnetization sampled in the process
was [M|/N=0.912 and the minimum value |M|/N=0. Defin-
ing the dominant magnetization space with the help of Eq.
(19) at the pseudocritical temperature of the susceptibility,
we locate this subspace as (|M|/N=0, |M|/N=0.816). This
shows that the dominant magnetization subspace so defined
is a subset of the sampled values. Note that for all lattice
sizes the left end of the dominant magnetization subspace is
|M|/N=0.

Let us now present the Metropolis time evolution of the
dominant M subspaces since this development offers a didac-
tic example of the very slow tail convergence of the tradi-
tional importance sampling methods. Figure 11 illustrates the
slow equilibration process of the Metropolis algorithm at the
tails of the order-parameter distribution. To draw this graph
the time-developing CRMMS, for the two r levels (r=10"*
and 107%) shown, was divided by the corresponding CRMMS
predicted by the high-level WL(N-fold:12-24) scheme which
appear to have very small errors for the lattice sizes shown.
Thus, considering these later CRMMSs as exact, the Me-
tropolis relative dominant M subspaces should grow in time
toward the value 1. For the value r=107* this is almost
achieved at the time #=150 for both lattices shown, L=70
and 100. However, for r=10"°, we observe a very slow re-
laxation process which persists even if we increase the ob-
servation time. This is obvious in Fig. 12 where, for the
smaller lattice L=70, the time duration of the process has
been increased up to r=900. Note that, if one was observing
the equilibration process of the algorithm with respect to the
mean value of the order parameter, he would then have been
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FIG. 12. The same as in Fig. 11 for L=70 for a longer run. The

dotted line shows the maximum value obtained for r=107° for the
first 300 time steps (compare with Fig. 11).

convinced that equilibrium of this quantity has been attained
well before the time r=150.

This situation is due to the very slow equilibration at the
tails of the distribution and in particular at the large-M tail.
In fact the time expansion of the CRMMS in the Metropolis
process is due to the gradual movement of the right end of
the magnetization range to larger values, since the left end is
|M|/N=0 from the very first stages of the process. Returning
to the large-M range is a rare event for the Metropolis algo-
rithm and this makes this traditional scheme inaccurate in the
far tail regime, but also very inefficient for the study of the
tails of the critical distributions. The data points L=120 and
140 for the Metropolis algorithm included in Fig. 10 were
obtained by using runs with approximately equal time re-
quirements (about 40 h in a Pentium IV 3 GHz) with the
WL(N-fold:14-26) scheme. For the case L=140 this corre-
sponds to only 30 time steps with the developing relative
CRMMS (r=107%) having hardly approached the value of
0.97 only. Even by using a much longer run (for instance 100
times longer) the Metropolis algorithm will not give an ad-
equate description of the far-tail regime.

IV. CONCLUDING REMARKS

Critical dominant energy and order-parameter subspaces
can be defined by various alternative restrictive schemes, as
shown in this work. In this way it is possible to optimize the
Monte Carlo schemes and study simultaneously all finite-size
anomalies of statistical models. The finite-size extensions of
the dominant energy and order-parameter subspaces scale
with exponents «/v and /v, respectively. Our experience
with this subject leads us to conclude that the extensions of
these dominant subspaces are more accurate than the esti-
mates of the corresponding thermodynamic variables (spe-
cific heat and susceptibility), establishing the critical mini-
mum subspace method as an alternative for the estimation of
the associated critical exponents from finite-size Monte
Carlo data.
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The presented clarification and generalization of the
CRMES method greatly speeds up the Monte Carlo simula-
tions in many applications of the methods determining the
spectral densities in classical statistical models. Furthermore,
the presented one-run high-level WL entropic sampling
schemes provide efficient alternatives when carried out in
appropriately defined dominant subspaces. We expect that
for complex systems with long trapping times, these schemes
will appear to be much more advantageous in almost all
respects. This last expectation has been verified by our stud-
ies of the random-field Ising model, which will be published
shortly. Moreover, these methods have general advantages,
the most important of these being (a) the fact that one can
improve the H(E,M) histograms by repeated application of
the method (at the same time we improve the accuracy of the

PHYSICAL REVIEW E 72, 066120 (2005)

DOS in the energy space), and (b) the fact that their imple-
mentation in a sufficiently broad energy subspace provides
data for calculating all finite-size properties of the statistical
system, which are relevant for the prediction of the
asymptotic critical behavior. Overall, we envisage that our
study can be further utilized in many ways for the investiga-
tion of the critical behavior of statistical models in future
research.
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